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Abstract. The excited states and the one particle energy spectra are evaluated for 

the electron gas in the deformable jellium model . A screened Coulombic interaction 

is used. The Hartree-Fock approximation is carried out with linear com‘binations of 

periodic functions as the trial wave functions. The behavior of the energy spectra 

with the density of the system is discussed. The existence of overlapping bands 

is established. This result suggests that finite conductivity at low densities can be 

obtained within the Hartree-Fock approximation. 
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1 Introduction 

The calculation of excited states in a quantum system is a problem of fundamental in- 

terest. Many properties of the quantum system depend on an adequate understanding 

of the system’s energy spectrum and thus on the energy of the excited states. 

The basic conceptual tool of the many body problem is to use a set of single 

particle states, the orbitals. The Hartree-Fock (HF) method gives a general procedure 

that defines the best orbitals. Therefore, it can be taken as the starting point for 

many approximation schemes [1,2,3,4]. The self consistent HF method has been 

systematically used for such purpose in atoms and molecules [5] and nuclei [6,7,8]. 

The self consistent approach for excited states requires a careful treatment for systems 

with large (infinite) number of degrees of freedom, such as is the case of the solids. 

In the HF method the orbital6 for the ground state arc the solutions of the HF 

equations. The determination of the unoccupied states is less obvious, this point is 

emphasized in [2] and [4]. The problem stems from which should be the potential to 

be used for the excited states. In the HF spirit, a natural choice is to determine these 

orbitals with a self-consistent potential for the excited state, with the additional 

constraint that they should be orthogonal to the occupied ground state orbitals. 

Instead, the usual procedure -which we wilI use - is to take the excited orbitals 

as solutions of the HF equations for the same ground state potential and different 

eigenvalues. Because the HF operator is hermitean the orthogonality of the occupied 

and unoccupied states is guaranteed. 

A well studied and useful many fermion system is the electron gas [9,10] for which 

ground state energies have been obtained in the jellium model with several meth- 
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ods; among them are the integral-approximant [ll], with Monte Carlo variational 

calculations for a large number of particles [12] and with stochastic simulations of 

the SchrXnger equation [13]. The essential approximation of the jellium model is to 

assume an inert uniform background. 

A different model is the deformable jellium [14,15] in which the background is 

allowed to deform in order to locally neutralize the electron gas charge density. This 

fact guarantees a lower energy per particle and therefore a more stable system(15,16]. 

Using trial functions with different crystalographic symmetries, the HF method has 

been successful to evaluate the ground state function and the energy per particle in 

the deformable jellium. One remarkable achievement of the deformable jellium has 

been the description of the electron gas transition from the homogeneous phase at 

metal-like densities, with Wigner-Seita parameter 1 < T, < 10, into localized states 

at lower densities, T, = 25. This leads at very low densities to Wigner crystallization 

[15,17]. More recently, the convergence of this algebraic HF procedure for the ground 

state has been studied using an improved expansion in terms of cosine functions [16]. 

However, the detailed reasons of the transition to the localized state have remained 

obscure; after all localization implies a mixing of the orbitals with states of a very 

large kinetic energy. 

Our purpose in this work is the evaluation of the one particle energy spectra 

E(k) for the ground and the first excited states for an interacting fermion gas in the 

deformable jellium model. Because we are mainly interested in the mechanism that 

causes the transition to the corrugated state we will only allow for the most simple 

of all corrugations: those along a single direction. Certainly, charge density waves 

(CDW) of the Overhauser type are described. 
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2 Model 

For the particle-particle interaction a screened Coulombic ( Yukawa ) interaction 

V(Tij) = ezp(-pr;j)/r;j is used in order to cut the long range of the Coulomb po- 

tential. When the screening parameter p is equal to zero, the Coulomb interaction 

is recovered. This screening could, in principle, take into account the zero frequency, 

static, correlations. 

For the state functions in the Slater determinant we use the usual plane wave 

functions multiplied by modulating functions. The modulating frequency is not ar- 

bitrary, but it is constrained by the orthonormality condition of the orbit&. The 

generic form of the orbit& is 

,ik.r N 

a(r) = ~*pl cos(w, * VI 

= 

V is the volume in which periodic boundary conditions are imposed. The vector 

q. = r&0 is along the corrugation direction. The orhtonormalization conditions 

require 40 2 2k, [18] and the C, are simply related to the C,, by the usual factors. 

We have imposed the orthonormality condition of the spin-orbit& as well as double 

occupancy of each orbital. The expansion in terms of exponentials is more general 

than the one of cosines, but for the lower energy bands they turn out to be equivalent 

[19]. It was shown in Ref. [16] that the dimension of the HF operator matrix is 

considerably reduced with the equivalent cosine expansion. 

The coefficients in the expansions of the ground and the excited states are self- 
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consistently determined. If a non homogeneous orbital is selected by the self-consistent 

procedure a symmetry breaking will be generated [14]. Otherwise, if the ground state 

is a plane wave (PW) solution then the excited states will be modulated by a cosine 

function. Two general types of solutions are expected. First, the ground state is a 

PW, which turns out to be the case for the region of the metal densities, T, 5 10. 

Then, the excited states are the terms corresponding to n = 1,n = 2, and so on in 

Eq. 1. Second, beginning with a certain value of the interparticle distance, which de- 

pends on the value of the screening parameter in the potential, the HF self-consistent 

solutions can be of the type of the CDW. In this case the solutions present a periodic 

density along the q. direction. The excited states are the solutions corresponding to 

the next eigenvalues of the RF operator. 

An important feature of the deformable jellium model is that the terms of the 

background energy are identically cancelled with the direct term that stems from 

the fermion-fermion interaction. Then the only contribution to the potential energy 

comes from the exchange term. 

The equation for the one particle energy spectrum, obtained with the HF approx- 

imation for a fermion system in the deformable jellium, is given by 

E(k) = (F)“‘; (k’ + 2 IC;j 472) 
, “Z-N 

c~lc~,c,,C*,6,,-,,,,,-“,F(Q,~); 

(3) 

where atomic units, a.u., are used in this equation and through this work. In the last 

equation the Wigner-Seita parameter,r,, is the interparticle distance in Bohr radius; 
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l-Q2+4pain 
F(Q,PL) = 2Q 

(1 + Q)’ + 4~’ 

(I- Q)2 + 4/.3 I) 

+2-4~[arctan(~)+arctan(~)]. (4) 

This expression reduces to the well known result [20] 

F(k,O)=yln [i’ii +2, 
(I I) 

in the /J = 0, plane wave limit. The form of Eq. 4 implies anisotropic surfaces of 

constant energy in k space whenever Q # k. 

The numerical calculations have been performed with N = 6; larger values of N 

result in negligible changes in the spectra for the first two energy bands. We will not 

be concerned here with the precision of the other bands because in the density range 

considered by this work they turn out to be very much separated from the first two 

bands. The results presented in this work have been obtained with a new code written 

mainly in a VAX-C implementation of C-language. Some subroutines, including the 

one used for the diagonalization of the HF operator [21], are in FORTRAN. The 

values of the self-consistent coefficients have been checked with those obtained before 

using ALGOL; unimportant differences in the coefficients mostly due to differences 

in floating point arithmetic precision were detected. 

3 Results and Discussion 

As can be seen from Eqs. 4 and 5 the screening parameter avoids the divergence that 

otherwise appears in VE(k) at the Fermi level for the Coulomb potential. The use of 
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a screened Coulombic interaction is one of the ways used to avoid the divergence at 

the Fermi level. Alternative methods, like the self-interaction correction to the local- 

spin density approximation, which introduces a Fourier cutoff of the interparticle 

interaction, have also been used in the literature [22]. 

In Fig. 1, the behavior of then = 0 energy spectra for several values of T, is shown. 

Clearly this is the simple case of a pure plane wave orbital. Because the background 

in this case is uniform the deformable jellium and the usual jellium coincide. Only 

the case p = 0 is considered. We are excluding the point k/kf = 1, where the curve 

has an infinite slope for the Coulomb potential. We see that the lowest values of the 

energy are obtained for densities in the region r,S5; for high densities, i.e. T, < 5 

the total energy again increases. This is of course, the well known behavior of the 

jellium model [I]. From the plots in Fig.1 we also learn that the region in k space 

responsible for the rise in the total energy per particle in the high density limit is the 

one near the Fermi level. 

We show the P, values for the transition from the PW to CDW type solution as a 

function of the screening parameter in Fig. 2.; ,u given in units of 2kf The transition 

point for the potential with /I = 0 is near the result obtained in the calculations for 

the electron gas in Ref. [16], where the state function used gave a particle’s density 

centered around a simple cubic lattice. From Fig. 2 one concludes that the transition 

for values of p # 0 occurs at lower densities and that the transition T. is an almost 

linear function of pa. The main effect of the transition is to change the admixture of 

the two first orbitals from zero to about 10% at the transition point. The density of 

the two first states is illustrated in Fig. 3 at r, = 40 and p = 0; where the first two 

levels mix about 20%. 
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In Fig. 4, the spectra for the PW state function and the two first excited states,at 

T, = 20, are presented. The spectra are for the Coulomb potential. A small splitting 

for different angles for the first excited band can be observed. This is a result of the 

anisotropic conduct mentioned after Eq. 4. This behavior is most likely due to the 

hypothesis of a spherical k Fermi surface which does not represent adequately the 

symmetry of the n # 0 orbitals. We will neglect this effect in this work and following 

Ref. [22] will take here a representative value; in this work the spectra at 0 = 90” will 

be taken. More relevant for our purposes is the observation that the first two bands 

show an overlap at this r,. This overlap begins for densities with T. x 10. 

The spectra of the three first bands are plotted in Figs. 5 to 8 for Jo = O,O.Ol, 0.1 

and 6’ = 90’; the figures correspond to four values of 7,: 5, 10, 20 and 40. The spectra 

in Fig. 5 show three well separated bands in the metal density region: T, = 5. For 

lower densities at T, z 10, the two first bands begin to overlap, as can be observed in 

Fig. 6. Before the transition to the CDWs, at T, = 20, Fig. 7 show a larger overlap 

of the two first bands. Fig. 8 shows the important overlap in the CDW region at 

T, = 40; at this densities even the third band is beginning to overlap with the second 

one. Not shown in the figures is the enhancing effect that the CDWs have on the 

band overlapping. 

4 Conclusions 

The main motivation of this work was the study of the mechanism that allows the 

CDW to become the ground state of the deformable jellium model of the electron gas. 

We conclude that the transition from PW to CDW is preceeded by an overlapping of 
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the energy bands. This overlapping continues to grow until the admixture of orbit& 

required for the CDWs is energetically favorable. Therefore, a reasonable mechanism 

for the generation of the CDWs has been found. 

The most interesting feature in our results is precisely the overlap in the energy 

bands. The overlap itself is, within the deformable jellium model, a consequence of 

the attractive exchange interaction; which after the cancelation of the direct term 

with the background energy is the only interaction left in the deformable jellium 

model. The most important consequence of the band mixing is clearly to change the 

nature of the Hartree-Fock ground state. In order to minimize the total energy the 

system will first fill the orbitals of small k in the second band. 

If, as it is done in band theory, the nature and the energy of the single particle 

orbitals is not severely affected by the new occupation. Then many states are avabable 

for conduction at densities lower than T. x 10. 
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Figure Captions 

Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

The one particle energy spectra for the ground state of the electron gas in 

the jellium model for various T, values. The numbers in the curves label 

the values of r.. 

The Wigner-Seitz parameter, T., for which the transition from the plane 

wave to the charge density wave solution occurs as a function of the screen- 

ing parameter p. 

Behavior of the charge density, p, along the direction of corrugation for 

the ground state (solid curve) and the first excited state (dashed curve). 

Curves have been normalized to density one for one period of corrugation. 

The charge densities correspond to the zero screening p = 0, Coulomb, 

solution at P, = 40. The density curves are periodic along the corrugation 

direction; the period of corrugation being r/kF. 

The first three energy bands of the electron gas with Coulomb interaction 

at T, = 20. The widening of the first excited band (dashed curve) results 

from the anisotropy of the energy spectra contained in Eq. 3. The same 

effect is also present for the second excited band but is too small to be 

plotted the scale of this figure. 

Energy spectra for the Coulomb interaction at T, = 5 in the metal den- 

sity region. The solid curves are for the spectra for p = 0; dashed lines 

correspond to p = 0.01 and dotted ones to p = 0.01. 

The same as in Fig. 5 for T. = 10. The first two bands begin to overlap. 
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Fig. 7: The same as in Fig. 5 for T. = 20. Before the transition to CDW, 

Fig. 8: The same as in Fig. 5 for T, = 40. After the transition to CDW. 
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